Loss and gain of elicitor function of soybean mosaic virus G7 provoking Rsv1-mediated lethal systemic hypersensitive response maps to P3.

نویسندگان

  • M R Hajimorad
  • A L Eggenberger
  • J H Hill
چکیده

Rsv1, a single dominant resistance gene in soybean PI 96983 (Rsv1), confers extreme resistance against all known American strains of Soybean mosaic virus (SMV), except G7 and G7d. SMV-G7 provokes a lethal systemic hypersensitive response (LSHR), whereas SMV-G7d, an experimentally evolved variant of SMV-G7, induces systemic mosaic. To identify the elicitor of Rsv1-mediated LSHR, chimeras were constructed by exchanging fragments between the molecularly cloned SMV-G7 (pSMV-G7) and SMV-G7d (pSMV-G7d), and their elicitor functions were assessed on PI 96983 (Rsv1). pSMV-G7-derived chimeras containing only P3 of SMV-G7d lost the elicitor function, while the reciprocal chimera of pSMV-G7d gained the function. The P3 regions of the two viruses differ by six nucleotides, of which two are translationally silent. The four amino acid differences are located at positions 823, 915, 953, and 1112 of the precursor polypeptide. Analyses of the site-directed point mutants of both the viruses revealed that nucleotide substitutions leading to translationally silent mutations as well as reciprocal amino acid substitution at position 915 did not influence the loss or gain of the elicitor function. pSMV-G7-derived mutants with amino acid substitutions at any of the other three positions lost the ability to provoke LSHR but induced SHR instead. Two concomitant amino acid substitutions at positions 823 (V to M) and 953 (K to E) abolished pSMV-G7 elicitor function, provoking Rsv1-mediated SHR. Conversely, pSMV-G7d gained the elicitor function of Rsv1-mediated LSHR by a single amino acid substitution at position 823 (M to V), and mutants with amino acid substitutions at position 953 or 1112 induced SHR instead of mosaic. Taken together, the data suggest that strain-specific P3 of SMV is the elicitor of Rsv1-mediated LSHR.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simultaneous Mutations in Multi-Viral Proteins Are Required for Soybean mosaic virus to Gain Virulence on Soybean Genotypes Carrying Different R Genes

BACKGROUND Genetic resistance is the most effective and sustainable approach to the control of plant pathogens that are a major constraint to agriculture worldwide. In soybean, three dominant R genes, i.e., Rsv1, Rsv3 and Rsv4, have been identified and deployed against Soybean mosaic virus (SMV) with strain-specificities. Molecular identification of virulent determinants of SMV on these resista...

متن کامل

Temperature affects expression of symptoms induced by soybean mosaic virus in homozygous and heterozygous plants.

Seven strains (G1 to G7) of soybean mosaic virus (SMV) and 3 resistance loci (Rsv1, Rsv3, and Rsv4) have been identified in soybean. The interaction of SMV strains and host resistance genes results in resistant (symptomless), susceptible (mosaic), or necrotic (leaf and stem necrosis) reactions. The necrotic reaction may be gene dosage dependent and influenced by temperature. Using a set of soyb...

متن کامل

Recombination within a nucleotide-binding-site/leucine-rich-repeat gene cluster produces new variants conditioning resistance to soybean mosaic virus in soybeans.

The soybean Rsv1 gene for resistance to soybean mosaic virus (SMV; Potyvirus) has previously been described as a single-locus multi-allelic gene mapping to molecular linkage group (MLG) F. Various Rsv1 alleles condition different responses to the seven (G1-G7) described strains of SMV, including extreme resistance, localized and systemic necrosis, and mosaic symptoms. We describe the cloning of...

متن کامل

Genetic analysis of resistance to soybean mosaic virus in j05 soybean.

Soybean cultivar J05 was identified to be resistant to the most virulent strain of soybean mosaic virus (SMV) in northeastern China. However, the reaction of J05 to SMV strains in the United States of America is unknown, and genetic information is needed to utilize this germplasm in a breeding program. The objectives of this study were to determine the reaction of J05 to all US strains of SMV (...

متن کامل

Complementary action of two independent dominant genes in Columbia soybean for resistance to Soybean mosaic virus.

A stem-tip necrosis disease was observed in the soybean [Glycine max (L.) Merr.] cultivar Columbia and its derivative OX686 when infected with a necrosis-causing strain of Soybean mosaic virus (SMV) in Canada. A dominant gene named Rsv3 was found in OX686 for the necrotic reaction. In the present research we have found that Columbia is resistant to all known SMV strains G1-G7, except G4. Geneti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 79 2  شماره 

صفحات  -

تاریخ انتشار 2005